اجزاء کامپوزیت : زمینه

اساسی ترین شکل یک ماده کامپوزیتی، شکلی است که در آن دو جز ترکیب شده اند و ماده ای را با خواصی که متفاوت است به نام زمینه و (bulk) از خصوصیات اجزای آن است تولید کرده اند. اغلب کامپوزیت ها شامل یک ماده حجمی یک تقویت کننده با انواع مختلف که برای افزایش سفتی و استحکام زمینه اضافه شده است.این تقویت کننده معمولا به شکل الیاف است.

خیلی از مواد هنگامی که به صورت الیاف هستند استحکام خیلی خوبی را نشان می دهند، اما برای رسیدن به این خواص، الیاف باید به یک زمینه خوب پیوند زده شوند. زمینه الیاف را از هم جدا میکند تا از ساییدگی و تشکیل عیوب سطحی جدید جلوگیری نماید و مانند پلی، الیاف را در محلی نگه دارد. یک زمینه خوب باید توانایی تغییر شکل تحت بار به کار رفته را دارا باشد و نیرو را به الیاف انتقال دهد و تمرکز تنش را توزیع نماید، الیاف را از صدمات محافظت نماید و از اشاعه ترک در کامپوزیت جلوگیری کند. مطالعه ی طبیعی نیروهای پیوندی نشان می دهد که به محض اولین بارگذاری، تمایلی به چسبندگی بین تقویت کننده و زمینه که می خواهد شکسته شود، وجود دارد.این نیروهای ضروری است.این نیروهای پیوندی باید به حد کافی بزرگ (pull out) چسبندگی برای جلوگیری از جذایش دو فاز باشد تا از این رویداد جلوگیری کند همچنین نیروهای پیوندی نقش مهمی در انتقال بار دارد. زمینه معمولا حدود درجه حرارت کار را مشخص میکند.عمومی ترین کامپوزیت های ساخته شده را بر اساس نوع زمینه می توان به سه گروه اصلی تقسیم نمود

پلیمرها به انواع مختلفی تقسیم می شوند که این تقسیم بندی می تواند برحسب نوع سنتز، نوع ترکیب شیمیایی و نوع ساختار مولکولی باشد. مهم‌ترین طبقه‌بندی پلیمرها به صورت زیر است:

ترموپلاستیک‌ها

ترموست‌ها

الاستومرها

۱) ترموپلاستیک‌ها

ترموپلاستیک ها یا پلیمر های نرم شونده در برابر حرارت از جمله مواد پلاستیکی هستند که مولکول های آنها با اندازههای مختلف در کنار یکدیگر قرار گرفته است و پیوند بین زنجیره های مجاور در آنها از نوع پیوند بسیار ضعیف واندروالس است. در نتیجه این پیوندهای ضعیف ثانویه، خواص مکانیکی این نوع پلاستیک ها در حد پایین می‌باشد. ترموپلاستیک ها به دلیل اینکه از مولکول هایی با اندازه های متفاوت تشکیل شده اند دارای نقطه ذوب مشخصی نیستند. آنها در درجه حرارت های معمولی محیط، جامد بوده و با افزایش دما نرم و کل پذیر می گردند. در حقیقت با افزایش دما زنجیره ها از هم جدا شده و با سهولت بیشتری روی یکدیگر می لغزند. همچنین افزایش بیشتر دما منجر به ذوب زنجیره های پلیمری می‌شود. نمودار زیر تغییرات مدول یانگ پلیمرهای ترموپلاستیک را با افزایش دما نشان می‌دهد.

نمودار زیر تغییرات مدول یانگ پلیمرهای ترموپلاستیک را با افزایش دما

همانطور که می بینیم در دمای کم مدول یانگ پلیمرها بالا بوده ولی با افزایش دما پلیمر از حالت صلب خارج میشود و به سمت کاهش ویسکوزیته حرکت میکند تا در نهایت در نقطه ذوب خود حالت ویسکوز می یابد. مزایای پلیمرهای ترموپلاستیک شکل دادن ساده ی آنهاست و معایب آنها خواص مکانیکی پایین و کاهش خواص مکانیکی با افزایش دما است. معمولا از ترموپلاستیک ها در ساخت قطعات کامپوزیت کمتر استفاده می شود. پلی اتیلن، پلی وینیل کلراید (PVC)، پلی استرها و پلی آمیدها از این دسته ها هستند. درصد ازدیاد طول پلیمرهای ترموپلاستیک و چگالی آنها نکته قابل توجهی است. معمولا چگالی ترموپلاستیک ها بین  g/cm۳ ۰,۹۲-۱.۳۹ می باشد و درصد ازدیاد طول این  دسته از پلیمرها از ۱۵ تا ۸۰۰ درصد متغیر است. از دیگر اعضای این خانواده میتوان از پلی پروپلین، پلی آکریلونیتریل، پلی متیل متاکریلات، پلی اکسی متیل و پلی کربنات نام برد.

مقایسه پلیمرهای گرما نرم:

مقایسه پلیمرهای گرما نرم:
مقایسه پلیمرهای گرما نرم:

۲) ترموست‌ها

در این دسته از پلیمرها زنجیره های مولکولی توسط پیوند های عرضی به هم متصل هستند و یک شبکه سه بعدی پدید می آورند. شبکه سه بعدی توسط اتصال یک عامل از زنجیره ها که از نقاط مختلف به هم متصل هستند پدید می آید. حاصل می شوند. عملیات پخت یا سخت شدن یک (curing) چنین پیوندهایی در اثر انجام عملیات پخت یا گیرش واکنش شیمیایی است که در اثر انجام آن پیوندهای عرضی ایجاد شده و سبب تردی و شکننده شدن ماده می شوند و چقرمگی پلیمر از بین می رود. به عنوان مثال میتوان از چسب دوقلو نام برد. یکی از اجزا سازنده این دسته از چسب ها ماده ای تحت عنوان سخت کننده (hardner) می‌باشد که باعث پدید آمدن پدیده‌ی گیرش می‌شود. واکنش گیرش همانطور که گفته شد ماهیت شیمیایی دارد بنابراین عوامل موثر بر تسریع سرعت واکنش هایی شیمیایی بر این پدیده موثر است. عواملی مانند دما، غلظت ، کاتالیزور و فشار بر پدیده ی گیرش تاثیر دارند. هنگام استفاده از پلیمرهای ترموست باید به این نکته توجه داشت که این پلیمرها را پس از انجام فرایند گیرش نمی توان کامپوزیت کرد و عملیات کامپوزیت سازی باید قبل از گیرش انجام شود. البته روش دیگری نیز وجود دارد و آن گیرش نیمه تمام است. در این حالت گیرش به صورت ناقص انجام می شود و پس از عملیات کامپوزیت سازی گیرش را تکمیل می نمایند.

در مقایسه بین پلیمرهای ترموست و ترموپلاستیک می توان به موارد زیر اشاره کرد:

۱-واکنش گیرش برگشت ناپذیر است.
۲ -کامپوزیت هایی که از پلیمرهای ترموست پدید می آیند در چرخه ی طبیعت بازیافت نمی شوند.
۳ -پلیمرهای ترموست در اثر افزایش دما تجزیه می شوند و ذوب نمی گردند.

مقایسه پلیمرهای گرما سخت:

مقایسه پلیمرهای گرما سخت
مقایسه پلیمرهای گرما سخت

۳– الاستومرها

این دسته از پلیمرها واسط بین ترموست ها و ترموپلاستیک ها هستند و در آنها تعداد پیوندهای عرضی ایجاد شده کم است. از این رو تحت تاثیر تنش و درجه حرارت معمولی محیط خاصیت کشسان پیدا می کنند و به همین دلیل به آنها الاستومر می گویند. این مواد با افزایش دما از حالت کشسان به حالت پلاستیک تغییر وضعیت می دهند.

پلیمرهای مورد استفاده به عنوان زمینه در کامپوزیت های زمینه پلیمری

الف) پلی استر: یک رزین ترموست است که از واکنش پلیمریزاسیون مابین یک الکل دو یا چند عاملی با یک کربوکسیلیک اسید دو یا چند عاملی ایجاد می شود. استحکام مکانیکی . مقاومت شیمیایی این پلیمر به عامل پخت کننده وابسته بوده و سرعت پخت آن با کاتالیزور قابل کنترل است. دما نیز نقش تعیین کننده ای بر سرعت و زمان پخت ۷۰ است. البته برخی از آنها دمای ℃ ۲۵۰ را نیز تحمل میکنند.ولی – دارد.کارایی اغلب پلی استرها در دمای ℃ ۸۰ مداومت حضور در این دما و دماهای بالاتر موجب افت خواص می شود. اشکال عمده پلی استر ها آن است که در خلال ۴ درصد انقباض و افزایش مقاومت شیمیایی، به این دسته از پلیمرها یک جز معدنی افزوده – انجام واکنش پخت بین ۸ می شود. عمدتا در کامپوزیت های زمینه پلیمری تقویت شده با الیاف شیشه از رزین پلی استر استفاده می کنند.در مورد کاربرد الیاف شیشه به همراه رزین پلی استر باید از ژل کوت مناسب استفاده کرد تا از نفوذ رطوبت به فصل مشترک الیاف و رزین جلوگیری کرد.

ب)اپوکسی : منشا به دست آمدن آن از رزین اپوکسید است.  در اثر پلیمریزاسیون این مونومر، حلقه باز شده و با واکنش با مونومرهای دیگر به یک زنجیر تبدیل می شود. این ماده در ۲ انقباض نشان می دهد و محصول جانبی حاصل از پخت آب یا مواد فرار نیست و از این جهت از پلی – اثر پخت % ۳ ۱۵۰ را نیز می توانند تحمل – ۵ است و برخی از آنها دمای ℃ ۲۵۰ – استر بهتر است. دمای پخت اپوکسی ها ℃ ۱۸۰ کنند. از آنجا که واکنش پخت آنها در دمای کم و فشار پایین میسر است لذا فرآیند تولید ساده ای دارند. کامپوزیت هایی که زمینه آنها اپوکسی است دارای چگالی کم و خواص مطلوبی برای صنایع هوا فضا هستند و بسیاری از کامپوزیت های کربن دارای چنین زمینه ای هستند.چند لایه های رزین اپوکسی از اهمیت فوق العاده ای در صنایع هواپیما سازی برخوردارند.بسیاری از قطعات ساختاری از جنس الیاف کربن و رزین اپوکسی جایگزین آلیاژهای فلزی شده اند و نتایج مطلوبی را نیز داشته اند. همچنین از این رزین به همراه الیاف آرامید در ساخت موتور راکت و کپسول های تحت فشار بهروش رشته پیچی استفاده می شود. علاوه بر آن رزین های اپوکسی به طور وسیعی به همراه الیاف و ساختارهای لانهزنبوری برای ساخت ملخ های هلی کوپتر استفاده می شود.

ج)فنولیک: این ماده از واکنش بین یک فنول و آلدئید به دست می آید. مکانیزم واکنش بین فنول و فرم آلدئید هنوز به طور کامل شناخته شده نیست با این وجود این مشخص است که واکنش شروع توسط فعال شدن حلقه های بنزنی با گروه های هیدروکسیل صورت میگیرد.حلقه های فنول دارای سه رادیکال آزاد هستند بنابراین امکان ایجاد اتصال عرضی وجود دارد. این رزین ها معمولا کدر هستند و رنگ آنها از کهربایی کم رنگ و قهوه ای تا سیاه تغییر می کند.این رنگ تیره ی آنها کاربردشان را محدود می کند. این رزین ها جز رزین های با کاربرد عمومی محسوب می شوند و در اشکال پولک، فیلم مایع و پودر موجود هستند.این رزین ها دومین رتبه را در بین رزین های گرما سخت پرمصرف دارند.رزین های فنولیک به دلیل تفاوت های فیزیکی و شیمیایی اجزا ، خواص متنوعی را در بر می گیرند. کاربردهای مرسوم از این مواد عبارتند از سازه های عایق برای ولتاژهای بالا ، چرخ دنده ها، ….همچنین از فنولیک ها به عنوان چسب پوشش و لایه برای قطعات قالب گیری استفاده می شود.

د)آمین: دسته ی دیگری از رزین ها آمین ها هستند که از مونومرهای اوره و فرمالدئید به دست می آیند. با اتصال فرمالدئید در زنجیره اتصال عرضی پدید می آید.

ه)پلی آمیدها:پلی آمید ها که کولار یکی از آنهاست پودری شکل هستند. به منظور مصرف در کامپوزیت ها ابتدا در یک حلال حل می شوند و سپس از آنها قطعه ساخته می شود و در ادامه حلال را خارج می کنند. کولار می تواند تا حدود ℃ ۴٠٠ را تحمل نماید و علت آن وجود زنجیره های آروماتیک در استخوان بندی اصلی زنجیره های آن میباشد.
و)پلی اتراترکتون: کامپوزیت های گرما سخت –تقویت شده با الیاف معمول -استحکام و سفتی بالایی از خود نشان میدهند ولی رفتار شکننده ای دارند. این رزین ها امکان جذب مقادیر بالایی انرژی بدون تخریب و صدمه و کاهش استحکام را ندارند. حتی ضربه های با سرعت پایین می تواند کاهش شدیدی در استحکام فشاری این مواد ایجاد نماید. اخیرا کامپوزیت های با زمینه ی گرما نرم توسعه یافته اند.شناخته شده ترین آنها کامپوزیت الیاف کربن و رزین پلی اتراترکتون می باشد. پلی اتراترکتون یک پلیمر حلقوی است و در دمای اتاق و سرعت پایین کرنش قادر به تغییر شکل پلاستیک و رسیدن به کرنش شکست تا % ۱۰۰ می باشد. کامپوزیت های بر پایه پلی اتراترکتون با فرآیند قالبگیری فشاری ساخته می شوند.محصولات نهایی کیفیت بسیار خوبی دارند و دارای حداقل حباب و سطح نهایی بسیار خوب هستند.
ز)رزین وینیل استر:این رزین ها محصول واکنش رزین های اپوکسی با اسید های غیر اشباع اتیلنی می باشند به جز حالات خاص،معمولا رزین های مینیل استر دارای انتهای غیر اشباع می باشند.این انتها می تواند واکنش شبکه ای شدن را انجام دهد و نیز می تواند پلیمریزاسیون زنجیره های وینیل استر را انجام دهد. آنها را به تنهایی با واکنش رادیکال آزاد پخت نمود و یا در مونومری مانند استایرن حل نمود و رزین مایع به دست آورد. در این صورت وینیل استر را می توان مانند رزین پلی استر استفاده نمود.رزین های وینیل استر خواص چقرمگی و مقاومت شیمیایی بسیار بهتری نسبت به رزین های پلی استر دارند.زنجیر اصلی اپوکسی سازنده وینیل استر موجب پیدایش چقرمگی و ازدیاد طول کششی بالاتر می شود.جرم مولکولی رزین های وینیل استر به انتخاب نوع اپوکسی به کار رفته بستگی دارد. به این دلیل استحکام
کششی، ازدیاد طول،نقطه نرمی، و واکنش پذیری رزین نهایی توسط جرم مولکولی و ساختار اولیه تعیین می شود.

منبع

جهت خرید و فروش محصولات ما میتوانید با ما در ارتباط باشید:

راه های ارتباطی:

مهندس علیرضا بیات 09120179639

مهندس فرشته راد 09033229935الی36

پست الکترونیکی resinpoli@gmail.com

آدرس شرکت خیابان ولیعصر بالاترازپارک ساعی پلاک 2404 کدپستی 1434764111طبقه سوم شرکت صنایع شیمیایی بوشهر